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We propose a kinetic theory of hard-sphere fluids which systematically 
generalizes the Enskog equation by taking successively into account 
binary, ternary .... dynamic correlations in a system close to equilibrium. 
The first approximation,  beyond Enskog, is displayed explicitly; it re- 
produces most of the results previously established in limiting cases (short- 
and long-time behavior, low-density expansions) and appears to give a 
good description of hard-sphere dynamics for all times and all densities. 
This explicit study will be presented in another  publication. 
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1, I N T R O D U C T I O N  

" T i m e - d e p e n d e n t  c o r r e l a t i o n  f u n c t i o n s "  p l a y  a n  i m p o r t a n t  ro le  in  n o n -  

e q u i l i b r i u m  s ta t i s t i ca l  m e c h a n i c s .  W h i l e  m o s t  o f  t h e  e x p e r i m e n t a l  o b s e r v a -  

t i o n s  o n  n o n e q u i l i b r i u m  s ys t em s  ( i n c l u d i n g  t h e  ve ry  i m p o r t a n t  " c o m p u t e r  

e x p e r i m e n t s " )  c a n  be  i n t e r p r e t e d  in  t e r m s  o f  s u c h  c o r r e l a t i o n  f u n c t i o n s ,  a 

t h e y  n e v e r t h e l e s s  p r e s e n t  a w e l l - p o s e d  p r o b l e m  w h i c h  is c o n s i d e r a b l y  
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simpler, in principle at least, than the general problem of nonequilibrium 
processes. 

Of course, knowing what should be computed does not necessarily help 
in carrying out explicit calculations, and so'far the precise evaluation of these 
time-dependent correlation functions has been confined either to unrealistic 
but exactly soluble models (like the one-dimensional hard-rod system (2~) or 
to systems which are realistic but of limited applicability (like the dilute gas 
system). Most of  the time, one has to rely on some kind of semiphenomeno- 
logical approach, 4 particularly when one wants to treat dense systems, in 
the development of  such an approach, the information that can be gained 
from computer experiments ~4-6~ is most valuable and, from this viewpoint, 
the spirit of  the present paper will be very similar to that of  the work cited 
above. In particular, we shall rely upon the fact that realistic dense systems 
seem to present the same qualitative features as hard-sphere systems. (4-6~ 
Since the dynamics of  these latter systems, being of a purely geometric nature, 
is much simpler, we shall limit ourselves here to hard-sphere systems, which 
already pose the most challenging questions. Once this system has been 
properly understood, it seems likely that the effect of  the soft attractive 
potential of  real molecules will be amenable to treatment by some kind of a 
perturbative method. Indeed, in the limiting case of  very tong-range forces, 
such a perturbation calculation has already been carried out. (a~ 

In order to make this paper as simple as possible, we shall limit ourselves 
to the so-called kinetic self-correlation functions, in which one particle of  the 
system, the " labe led"  particle, plays a special role. They are of the form 

Fs(t) = lim(t)~(t)q~t(0))a (1) 
a 

where the brackets denote the average, 
/ 

( ' " ) a  = ) dx l  ... dxN ... tXo (2) 

over the canonical ensemble density #0 of a system containing N particles in 
a box of volume f~ and x~ = (r~, v~) stands for the position and velocity of  the 
ith particle 5; the symbol lima indicates the well-known thermodynamic limit 6 

N - + o o ,  f 2 - + o %  N / f 2  = p finite (3) 

Ol(t) denotes the value of the dynamical function qbl at time t:  

Ol(t) = exp[--iLNt]O)~ (4) 

See Refs. 3 and 4 for various approaches. 
5 We do not ~-,'rite the vector symbols explicitly, except when there might be some 

ambiguity otherwise. 
6 The existence of this limit follows from the recent work on the time evolution of 

infinite systems by Landford and others5 TM 
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(LN is the Liouvi l le  opera tor ) ,  and  Tz  and  q)z are  funct ions which depend  

only  on the phase  space coord ina tes  o f  the labeled part ic le  1, 7 

'V~ = ' I q ( x 0 ,  q~ = O~(x0 (5) 

The theory  to be deve loped  be low can be extended with little difficulty 
to the so-called " t o t a l "  case where the dynamica l  funct ions would  depend  
symmetr ica l ly  on all part icles  in the system as a sum of  single or  pairs  o f  
phase  space variables,  but  we shall  no t  do this here. ~9~ 

Typical  examples  o f  (1) co r respond  to the choices 

qe 1 = ~(r '  - rl) ,  ~1 --= ~(r - r l )  (6) 

P~ being then the Van Hove  se l f -corre la t ion  funct ion,  and  

T 1 = 0 1  = v ~  (7) 

which defines I2~ as the veloci ty au tocor re l a t ion  funct ion,  for  which very 

extensive da ta  are  avai lable  in the case o f  ha rd  spheres.  (4~ 
It  is well known  tha t  the ca lcula t ion  o f  (1) can be reduced to the solut ion 

of  a l inearized kinetic equa t ion  for  a one -body  self-dis t r ibut ion funct ion 

Z,~(x~; t), 

t)  = lira j dx2 ... d x u  tL(x~ . . . . .  XN; t )  (8) L,~(x~; 

where tz(x~ .... , xN; t) is the ensemble  densi ty  at  t ime t ob ta ined  as the solut ion 
o f  the Liouvi l le  equat ion  with the init ial  condi t ion  a 

W e  get f rom (1) 

n ( x l  ..... xN, 0) = T l ( x : ) n o  (9) 

[,  
Q = j dxl t) (lO) 

and hence knowledge  off~. l (x~;  t) suffices for the calculat ion o f  G~. More-  
over, the kinetic equa t ion  obeyed byf~.~ has to be l inear  in view of  the l inear  
na ture  o f  the devia t ion  f rom equi l ibr ium (9). 

v Formally we have a composite system consisting of a fluid of n - 1 identical particles 
in a volume O with N - ~  Go, ~ ~ 0% N/~) --+ p in the thermodynamic limit and a 
"one-particle system" which "happens" to be confined to the same volume f2 and is 
otherwise similar to the other fluid particles. 

8 In the case of the velocity autocorrelation function (7),/~(xl,..., xu ; t) is normalized to 
zero and f~,l(xl  ; t)  is not really a "distribution function" in the usual sense. Formally, 
however, this makes no difference and we will continue to talk of a self-distribution 
function that is normalized to unity. Indeed, because of linearity, all the results can be 
expressed in terms of the Green's function f~.~(xi ; t/x~') corresponding to ~(x~) = 
a(rl - ~ ' )  a(vl - v~'). 
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In this paper, we want to exploit two observations to develop an approxi- 
mate kinetic theory for f~,l. The first one is of an "experimental"  character 
and results from the interesting computer calculations of Alder et al.~*): 
Even at fairly high densities, the Enskog theory provides a very good "first 
approximation" to the behavior of hard-sphere systems. The second is of a 
theoretical nature: It was remarked by Lebowitz et al. ~3b~ that the Enskog 
theory also yields the exact value of the first derivative off,,1 at t = 0. This 
property is a consequence of the fact that, at t = 0, the distribution function 
/~, Eq. (9), only involves a one-body deviation from equilibrium. Thus, at 
t = 0, all correlations in the system are purely static and this is sufficient to 
make the Enskog equation exact. Indeed, as will be seen later, all that is 
required is that the two-particle distribution have the form 

f~,2(xl, x2; t) -- pg2(rl, r2)f~,l(xl ; t)q~(v2) 01) 

when particles are entering a collision. Here gn(rl ..... rn) is the equilibrium 
n-particle correlation function and q~(v) denotes the Maxwellian distribution 
function. 

Of course, such a property is not satisfied for t > 0 and correlations of 
dynamical origin, involving successively two, three,.., particles, build up in 
the system and the Enskog theory is no longer exact. Yet the empirical 
success of the Enskog theory suggests that the effect of such dynamical 
correlations on the development of I~s remain small; hence the idea of a 
systematic scheme which would take into account such binary, ternary,... 
dynamical correlations. 

The formal realization of such a scheme, oriented toward applications, 
motivates this paper. In Section 2 we give a precise definition of the n-body 
dynamical correlations and we study their formal exact time evolution. This 
analysis rapidly becomes very awkward with increasing n; moreover, very 
little results beyond n = 2 are required for applications. Hence we have not 
found it useful to explicitly write down here the full development of the 
theory for dynamical correlations of order higher than two: The relevant 
general results will merely be stated and the proofs will be presented 
elsewhere. ~9) 

In Section 3 the basic hypothesis of our work is stated and used. Loosely 
speaking we assume that, as a zeroth approximation, the n particles involved 
in an n-body dynamical correlation evolve as if they were independent of 
each other, each moving in an equilibrium fluid. Deviations from this 
"independent particle approximation" are supposed to be small and are 
measured by a formal smallness parameter E. They are treated by a systematic 
perturbation scheme in powers of e. At the formal level, this assumption has 
the following attractive consequences. 
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1. To order E ~ we get a most natural extension of the Enskog assump- 
tion (11) to the n-body distribution function; namely we have 

j }o~t ,  t) p~-lgn(rl  .., rn)fs , l (xl;  t)  ~-~ (12) ,~t~l, . . . ,  x~; = ,. ~o(vO 
i = 2  

2. To order e n (n > 0), f s . l ( x l ;  t)  has its first 2n time derivatives exact 
at t = 0 (for n = 0, we still have one correct derivative); f rom this point of  
view, the present work generalizes the short-time kinetic equation approach 
of Lebowitz et al. ~3b~ 

3. It  can be argued that the f t , ,  will approach their correct equilibrium 
value as t ---> oo to every order in E. 

Of  course, explicit calculations cannot be pursued to arbitrary order, 
and in Section 3 we limit ourselves to the first-order correction in E. Already 
to this order, the kinetic equation we derive has many virtues: 

1. As already stated, the first two time derivatives off~ a are exact at 
t = 0 .  

2. At low density, we obtain correctly, beyond the Boltzmann contribu- 
tion, the terms of the Choh-Uhlenbeck triple collision operator which 
describe one, two, and three dynamic binary collisions/11~ These terms are 
known to give the dominant effects. (~2~ 

3. The solution of this equation also leads to what is believed to be the 
correct nonanalytic contribution (c~p In p) to the density expansion of the 
self-diffusion coefficient. (za 

4. In the limit of  long times, it leads to the t -a/2 long-time tail for the 
velocity autocorrelation function, ~14~ though the numerical coefficients are 
only correct in the low density limit. ~15~'~ 

These properties (which incorporate almost all that is safely known in 
the kinetic theory of fluids) make this first-order kinetic equation very 
appealing; moreover, its form for all times and all densities is sufficiently 
simple that one can find its explicit solution, at least approximately. How- 
ever, we shall leave this last point for another paper of  this series. (~m 

While our interest lies entirely in the time evolution of the f,,,(x~ ..... 
x~; t) (particularly for n = 1) in the thermodynamic limit and our final 
equations deal exclusively with these functions, the analysis which motivates 
and gives a rationale to our later approximations has to be formulated in 
terms of finite, albeit arbitrarily large, systems. This leads to a certain 
awkwardness in that our intermediate formulas contain expressions that 
become infinite or meaningless, e.g., /,(x~ ..... xN; t), in this thermodynamic 
limit. We discuss this further in Section 5. 

Some calculations are relegated to appendices. 

o Technically, 3 and 4 are consequences of the fact that our kinetic equation includes, 
among others, the so-called "Enskog ring terms." 
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2. THE H I E R A R C H Y  OF n - B O D Y  D Y N A M I C A L  
CORRELATIONS 

Let us suppose that we know the ensemble density /x at time t. We 
formally expand it in the following way1~ 

/~ = ,u(1) + ~(2) + ~(a) + ... (13) 

where lz 

tz (1) = D/~o Wl(xl; t) (14) 
~(vl)  

( j~l W2(xl, xj;t) W~l'(xl;t)) (15) 
~(2)= ~ t~o  ~(v~)~(v3 + ~(vl) 

I [ ~, Wa(xl, x,, x~; t) W(Z)rx x" t) 
F { a ) =  f i f o  cp(vl)qo(vj)~(vk) \ 1  r j< /~  

W(3~)(xl ; t ) )  (16) 
+ ~(v~) 

The higher order terms, which are written in Appendix A, similarly 
correspond to contributions involving successively groups of four, five,... 
molecules, always including the tagged particle 1 ; the functions W(m ~) can be 
taken as symmetric in their n - 1 variables different from x~ [see footnote 
to Eq. (5)1. 

Of course, the single condition (13) leaves us with an enormous arbi- 
trariness in the choice of the functions W. We now specify them in the follow- 
ing way: For  W~, we impose that tz (~) alone leads to the correct one-body 
distribution fs,l(x~; t). Hence we require 

f~.~(x~; t) = lim ( dx2 ..- dxz~ ~21~o W~(x~; t) (17) 
a j ~0(vl) 

which tells us, using the usual definitions of the equilibrium distribution 
functions (cf. Ref. 3b), that 

ml(Xl; t) = fs,l(Xl; t) (18) 

Comparing (17) with the definition (8), we get an extra condition on 
/x(2) /z(a),... : 

lim f dx2 ... dxN [F (2) + F (3) + ...] = 0 (19) 
n d 

~o A similar expansion, with a rather different aim, can be found in Ref. 17. 
~ The f2 appearing in these equations properly belongs in the denominator, q)(v~)/D 

being the equilibrium distribution of the labeled particles in a uniform system. 
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We further  impose that  this condit ion is separately 
t, ~ (i > 2): 

489 

satisfied for each 

/, 
lira | dx~ ... dXN tz (i~ = 0, i > 2 (20) 

a j 

For  example,  in the case i = 2, Eqs. (15) and (20) immediately lead to: 

lima [P f dx2 g2(rl, r2)W2(xl,x2;t) + W~l)(xl; t )]=O (21) 

a relation which determines Wh 1) in terms of  I7/2,12 

; t) = - p f dx2 g2(r~, r2) W2(xl, x2 ; t) (22) W~l~(xz 

Similarly, we determine I4/2 by imposing that  the two first terms o f  the expan- 
sion (13) lead to the correct two-body d.f.f~,~(x~, x2; t), which is defined by 

f~,2(xl, x2; t) = lira N [" dxa ... dxN tt(x~ ..... xx; t) (23) 
j 

Hence we require 

f~.2(xl, x2; t) = liarn N f dx3 ... dxtr [tz (1~ + /~(2~1 (24) 

With the help of  (22), we thus have 

f~,2(xl, x2; t) = pg2(rl, r2)f~,l(xl; 0~p(v2) + 3f~,2(xl, x2; t) (25) 

where 

~Z,2(Xl, x~; t) 

= p W~(xl, x2; t)g2(rl, r2) + p2~o(ve) 

f dx2' [g3(rl, r2, r2') - g2(r~, r2)g2(rz, r2')] W2(xl, x2'; t) (26) X 

These equations provide us with a definition of  W~ in terms off~.2. As a 
consequence of  the equality between (23) and (24), we have 

lim s f dxa ... dx~ [~(~' +-.-1 = 0 (27) 

and, in analogy with (20), we impose  separately 

liam N .( dxa ... dx N/x (i) = 0, i > 3 (28) 

~ The existence of the integral on the right-hand side of (22) in the large-volume limit 
requires that W2 vanishes for large separation between 1 and 2; this implies, of course, 
that our nonequilibrium ensemble/x describes a local perturbation around the tagged 
particle. 
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In the case i = 3, Eqs. (20) and (28) provide us with two linear relations 
between W3, W(a 2~, and W~I~; this in principle leaves us with the only un- 
known W3. 

As shown in Appendix A, the pedestrian procedure followed here for 
W1 and W2 can be formalized for arbitrary W., although the explicit ex- 
pressions rapidly become complicated. Let us briefly summarize the main 
results" The functions W~ ~ (i = 1,..., n - 1) can all be determined in terms 
of W. with the help of conditions analogous to (20) and (28) and the W~ 
themselves are defined in general through the set of equations 

f s , ~ =  ~ A~,mW~ (29) 

The A.,m are linear integral operators: 

f . . . . . .  ' . . .  ' ' '" t) (30) An,mWm ~ dxl '  dxm' ~r XnIXl Xm )Wm(xl  ,..., xm , 

entirely determined in terms of purely equilibrium quantities. For example, 
we see from (18), (25), and (26) that 

ser = a(xl - xl ' ) ,  d2,1 = [g2(rl,  r2)~o(v2)3(xl - x l ' )  

sr = {pg2(rl, r2) 3(x2 - x2') + p2cp(v2)[g3(rl, r2, r2') (31) 

- g2(rl, r2)gz(rl, r2')]} 3(xl - xl ') 

If  we assume that Eq. (29) can be inverted, we get 

W,~ = ~ B~,.f~,.  (32) 
r ~ m  

where, with the same formal matrix notation as in (29), 

B,,m = (A-1),.m (33) 

The explicit construction of Bn, m is in general very difficult (in Appendix 
B, we show how this can be done for B~,2); yet it is remarkable that no such 
explicit construction is required for the further development of the theory. 
The important point is that Eq. (32) provides us in principle with a complete 
characterization of the set of functions W~ that are equivalent to the original 
distribution functions f~, ,n. For m given, they are entirely determined by the 
distribution functions of order n 4 m, through linear integral operators 
which depend only on the equilibrium properties of the system. Moreover, 
once the linear operators An,m have been defined, all reference to the N-body 
distribution tz can be forgotten: All calculations are done in the thermo- 
dynamic limit; see Section 5 for further discussion of this point. As a last 
formal point, let us notice that it is generally convenient to use the function 
~f~,m defined by 

3f~,m = Am,mWrr., rn > 1 (34) 

instead of Win; this notation is consistent with (26) and (31). 
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Let us now pause and investigate the physical meaning of  the functions 
3f~,m (or W~). First let us remark that if we truncate Eq. (29) at any order m, 
we generate a well-defined but approximate n-body reduced distribution 
function f~.n for all n. For example, if we only retain W1, we get precisely 
Eq. (12), which corresponds to 

N 

~r = P~-lg~(rl,..., rn) ~(xl -- x l ' )  I -~ q)(vO (35) 
1 = 2  

To this order, the only nonequilibrium effects that we retain are of  the 
one-body type: All n-particle correlations are purely static. 

As discussed in Ref. 3b, this corresponds to a description where one 
supposes that the higher order distribution functions accommodate instan- 
taneously to the one-particle distribution, which is not at equilibrium, in a 
state of conditional equilibrium relative to this particle; i.e., the ratio 

fs , . (xz ..... x . ;  t)/f~,l(xl; t) 

is equal to its equilibrium value even though f~,1 changes with time. When 
we now retain W~ (or ~fs,2), we get an extra contribution to f~,. which we 
denote f}22. Let us limit ourselves to n ~< 3. We have 

L(2~t~ . t) = 0 (36) 

which is obvious because, by definition, f~,l was already correctly described 
in the first approximation: 

f},2)2(xl, x2; t) = 3f~,~(xx, x2; t) (37) 

which guarantees that, to this "order , "  f~,2 is also correctly described. 
From (15) and (22) we get also 

f}2>I~ t) A3 2 W~ , 3 k ~ 1  ~ X 2 ,  2C3 ~ ~--- , 

---- p~ga(rl, r2, r3)[W2(xl, x2; t)~(v3) 

+ w~(x~, x~; t)~o(v~)] 

+ p3q~(v2)q~(v3)f dx2' [g~(rl, r2, ra, r2') 

- ga(rl, r2, ra)g2(rl, rs )] W2(xl,  x2'; t) (38) 

which together with (26) leads to f~,8 being a linear functional off~,a and 
Sfs,2(xl, x2; t). Comparing (35) and (37) to (12), we see that we have im- 
proved the description of our system by including two-body dynamical 
correlations in the system, measured by ~f~,z, to which all higher order 
distributions now adjust in a nontrivial manner. Clearly, the "higher order"  
contributions 6f~,, (n = 3,...) similarly describe the effect of triple .... dynami- 
cal correlations in the system. 
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We see thus that  the relation (29) provides a systematic procedure  to 
construct  the higher order  distr ibution functions once the lower order ones 
are given; it furnishes a mos t  natural  generalization of  the condit ional  static 
equil ibrium formula  (12). 

Unti l  now, we have considered our  system at  one instant  of  t ime only. 
As we shall see in the next section, the relations (29) and (34) are mos t  
useful in deriving (in principle systematically) approx imate  kinetic equations 
for fs,1, when it is used in connect ion with the B B G K Y  hierarchy. This 
hierarchy can be written (see, e.g., Ref. 18) 

i = i  ~ r i  i > j = l  

= ~ (  dxn+lKt,n+lf~,n+l(Xl, X2,...Xn+l;t) (39) 
i = i  '̀ / 

While our  previous t rea tment  was valid for  arbi t rary  forces, we shall 
now specify, for  reasons explained below, that  we consider a hard-sphere 
system. In this case the opera to r  K~r is 13 

= a 2 f d•  (•215 [3<3>(r,y - a• vfl /qj 

-- 3(3>(ru + a• (40) 

Here a denotes the hard-sphere diameter ;  v u is v~ - vy; r~j is r~ - rj; x is a 
unit vector ;  and O(x) is the Heaviside function [0(x) = 0 for  x < 0; O(x) = 1 
for  x > 0]; finally b,(v~, vj) is a displacement  opera tor  in the velocity space 
of  particles i and j :  

b• vj) = exp - (x .v~ j ) •  ~ 

which turns the velocities v~ and vj prior  to collision into the velocities v~' 
and v / a f t e r  the collision, e.g., 

vl '  = Vl - (~t'v12)x, v2' = v2 + (~t'v12)x (42) 

Using (29), (32), and (34), one can write down f rom (39) an analogous 
hierarchy in terms off~.~ and 3f~,~ (n > 1). Al though we have done this in 
general, <9> we shall limit ourselves here to the cases n = 1 and 2. F r o m  the 
first B B G K Y  hierarchy, we immediately  obtain 

c~f~,1 = S1,~f~,~ + ~1,2,3f~,2 (43) 

~ To  avoid  a compl ica ted  no t a t i on ,  we sl ightly overs impl i fy  the  express ion  for K u 
here ;  indeed,  in case Kzj acts  on a func t ion  which  itself is s ingular  at ha rd  core  contac t ,  
one  shou ld  use  a l imit ing p rocedure  to define K u.  A l t h o u g h  this  poin t  shou ld  be kept  
in m i n d  for s o m e  later explicit  ca lcula t ion ,  we shall  ignore  it here  and  refer the  reader  
to the  l i terature,  in par t icu lar  the  excellent d i scuss ion  o f  Ref.  19. See also Ref.  10. 
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where the opera tors  5~1, z and oW~, 2 are defined by 

~c,c~l,~f~,~ = - v l  ~ + ~ dx2 K12g2(rl, r2)q~(v2) f~,~(x~ ; t) 

and 

(44) 

F 
~G,2 G,2 ) dx2 KI~ 3fs,2(xl, x2; t) (45) 

The  case n = 2 is still easy, albeit tedious. We write 

~ 3f~,2 = Otf~,2 - p(OJ~, jg2(r l ,  rico(v2) (46) 

and we use the first and second B B G K Y  equations to t ransform the right- 
hand  side. Finally, we express f<2 and f~,a back in terms o f f , , l ,  3fs.2, and 
8f~,a with the help of  (29) and (34) [see also (31), (35), and (38)1. We find, 
then, 

0t 8f~,2 = ~2,~f~,1 + 5f2,2 8f~,2 + 5('2,3 3J;,a (47) 

The  opera to r  5~2, ~ which results f rom this s t ra ightforward calculation is 
given in Appendix  C, together  with 5('2,2 and ~ , a .  After  some manipula-  
tions sketched in Appendix  C, we get the compac t  expression ~ 

o~2,1fs, 1 : pg2(rl, r2)[K12,fs,l(Xz, t)/~0(u1)]~o(u1)q0(v2) 

p2 f dx2' [ga(h ,  r2, r2') - g2(h ,  r2')g2(rz, r2)] + 

• [K~,, A,~(x~ ; t ) /~(vJ]~o(vJ~(vj~(vd) (48a) 

- A2,2[Kz2,f~,~(xz, t)/q)(v~)]q~(vz)qo(v2) (48b) 

Here  [..., ...] denotes the usual commuta to r .  We shall not  need the formulas  
for  s176 and 5P2.a, except in the appendices.  

The formal  extension of  (47) to G 8J;,, (n > 2) will not  be presented 
here;  we merely quote one proper ty  which we shall need later. One finds in 
general that  

% ,~A,,~ : ~n.,~_ ~ 8A,,~_ ~ + 5e.,,~ 3f~,,~ + ~ . ~ +  ~ 8A,~ + 1 (49) 

i.e., 3f~., only couples to correlat ions of  order  n +_ 1, while a naive glance at 
(29), (32), (35), and (39) would lead one to believe that  it also couples to 
3f~.m, 1 ~< rn ~< n -- 1. The p roo f  of  (49) is not  trivial (see Ref. 9) and rests 

14 In Eq. (48a), we find a combination of the operator K12", which is singular for 
[r12,l = a, with the correlation functions ga(ri, r2, r2") and g2(rl, r2"), which are 
discontinuous on the same surface. However, because in our starting equation (39) 
these correlation functions are on the right of the operator, the rules of Ref. 19 
unambiguously tell us that they should be taken at ]r12"[ = a+. 
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upon the explicit form of the coefficients An,~ in Eq. (29). Yet this result is 
physically very reasonable, because, if our interpretation of 3f~,n as a dyna- 
mical n-body correlation is correct, the only way it can be created through a 
single collision process from a lower order dynamical correlation is by 
having one dynamically uncorrelated particle interacting with a "cluster"  
of n - 1 already dynamically correlated particles. 

Notice that with the notation 8f~,~ =-f~,l and 8f~,o = 0, Eq. (49) also 
applies for n = 1 : It then reduces to (43). 

3. I N D E P E N D E N T  P A R T I C L E  A P P R O X I M A T I O N  

The formalism introduced in Section 2 is exact, but to make use of it, 
we need some kind of approximation scheme. 

In order to get a hint, let us reconsider the operator ~~ [Eq. (43)]. 
With the help of (40), it can be rewritten 

~ 1 1  = [-~,~ (a /aq)  + c 5 1  - C ~ (50) , S ,1  

where C ~  is the self-Enskog linearized collision operator: 

C~lfs,l(t) = a2og~(a+) f d%f  d• ( •  

x [fs,~(rl, Vl'; t)~o(v2') -f~,~(rz, vl ; t)10(v2)] (51) 

Hence, if we completely neglect 3fs,2, we obtain the Enskog equation for 
f~,l. This latter equation has two important virtues: 

1. For any initial condition of the type (9), it is exact at t = 0. This was 
shown explicitly in Ref. 3b and appears here as a consequence of the fact that 

3f<n(0) = 0, n > 1 (52) 

for such an initial condition. 
2. As can be observed from the experimental data of Alder et al., (~ the 

Enskog equation gives a good approximate description of the time-dependent 
correlation functions at all times. From this point of view, the equation 
corresponding to (50) with soft potentials is much less interesting because it 
merely describes the free motion of the tagged particle. (3b~ This is why we 
limit ourselves here to hard-sphere interactions. 

Since the Enskog equation already gives good results, it is tempting to 
systematically improve it by taking into account the dynamical correlations 
due to two, three .... particles. The simplest procedure which comes to mind 
is of course truncation of our hierarchy for 3f~,~ at an order n > 1: For 
example, we could argue that since 8f~,2 is small (at least at contact)--as is 
testified by the success of the Enskog equation--8f~,a should be even smaller. 
Setting 3f~,3 = 0 in Eq. (49) would give a closed system of equations for 
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f~,l and 3fs,2, f rom which a non -Markov i an  kinetic equat ion for  fs,1 would 
emerge. Al though physically attractive, this procedure  presents a number  of  
difficulties, i.e., the compl ica ted nature  of  the opera to r  5~2,2 [see Eqs. 
(C.2)-(C.4)] makes  the resulting kinetic equat ion mathemat ica l ly  untractable.  

We propose  now an alternative approx imat ion  scheme, which is more  
useful. Suppose we have, at  t ime t, an n-body dynamical  correlat ion 
Sf~,~(xl, x2 ..... x , ;  t) and consider a configurat ion of  the n particles such 
that  all distances Irul (i, j c{1 ..... n}) are much  larger than  the range of  
molecular  equilibrium correlat ions;  15 then these n particles have no way to 
influence each other  and the evolut ion of  ~f~,n is given by the independent  
evolution of  each of  the n particles surrounded by a locally equil ibrium fluid. 
We then assume that,  at  all distances ]r~j], this independent  particle picture 
still furnishes a good  zeroth-order  a p p r o x i m a t i o n  to the exact mot ion  of  
3f~,n. In order  to put  this verbal  s ta tement  in a mathemat ica l  frame,  let us 
r emark  tha t  the opera tors  5r 5~,n, and 5P~,~+1 depend on the spatial 
coordinates  rl  .... , rn, e.g., 

f ~ ,~(r l ,  vl,..., r~, v, lx 1',..., x,')f~,~(xl',..., x,') dxl' ... dx~' 

in a much more  complicated way (involving the equil ibrium correlations) 
than  do the K~j and K~,n+l defined in (39) and (40). We consider now the 
following limit" 

2f~,.~ =- lim ~n,m, m = n - 1, n, n + 1 (53) 
( oo ) [ritl ~ 

V i i i { 1  . . . . .  n} 

Of  course, ~ , m  still depends on xl  ..... x~; as a mat ter  o f  fact we shall see 
soon that  it is o f  the fo rm 

~n,m = ~ l(n']m(X~) (54) 

where 1 (~n,m only depends on the coordinate  x~. 
The  independent  particle approx imat ion  amounts  to assuming tha t  

~'r is a good zeroth-order  approx imat ion  to the exact 24'.,m for  all distances. 
We thus write (49) as 

d~taJ;,n -- (~n,n-1 ~fs,n-1 -]- ~n,m afs,n -1- ~n,n+l  ~fs,n + 1) 

o o  o o  

+ (2f, , , , ,  +,  - ~,, , , ,  + 1) ~ L , , ,  + 1 ( 5 5 )  
co 

15 Thinking in particular about the long-range hydrodynamic correlations which play 
such an important role in mode-mode coupling theories, (~4~ it is clear that dynamical 
correlations can persist over distances much larger than the range of the equilibrium 
correlations. 
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and we assume that  the operators  on the right-hand side of  this equation can 
be formally treated as small quantities. 

One nice feature of  this formulat ion is that  the operators  s176 can be 

determined explicitly and turn out  to be particularly simple. One finds 

~ , . - 1  = 0 (56a) 
c o  

s,1 + C~ ~ (56b) 

s +1 = 2~~ +z (56c) 
o o  

where ~E C~,1 is the Enskog operator  (50) corresponding to the labeled particle 
1 and 6"~z is the corresponding opera tor  for  an arbitrary fluid particle i r 1 ; 
acting on a function f ( x ~ ;  t ) ,  it gives (3b) 

• ~ dx/ V(Ir~ - r / [ ) f (x / ;  t) + Q~f(, t) (57) 

where 

and 

c, Ef( , t ) =  a2pg2(a+) f dvj f d~ (~.v,)O(~.v,) 

• [f(r~, v/; t)~(v/) + ~o(v/) 

x f (ri - a• v/ ;  t) - f ( r i ,  v~; t)qo(vl) 

- cp(v0f(r~ + a• vj; t)] (58) 

- f i V ( R r  ~ - r(])  = c([r~ - r~'[) + g ( a + ) O ( a  - Ir, - r / l )  (59) 

where c ( r )  is the direct correlat ion function. 
The p roo f  of  (56) for general n is far f rom trivial and will be reported 

elsewhere(9); nevertheless, the simplest nontrivial example, n = 2, already 
nicely illustrates the general result, and this case is treated in detail in 
Appendix C. 

With the help of  (56), we now rewrite (55) as 

I~'(~fs'n- ( ~1 -t- i=2 ~ ~E)~fs,rL__~n,n+ 1 ~fs,n+l 
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where we have introduced a dimensionless pa ramete r  e (e = 1!), which we 
formal ly  consider as small. 

Let us examine a few formal  propert ies  of  this hierarchy:  

1. To  order  c ~ we may  neglect the r ight-hand side of  Eq. (60) and, with 
the help of  the initial condit ion (52), we find immediately  

~f~(~ -- 0, n > 1 (6t) 

Using (29) and (32), we recover (12). Hence,  neglecting all deviations f rom 
the independent  particle picture leads to a very natural  generalization of  the 
Enskog assumpt ion  (11) to the higher order  distribution functions. 

2. For  ~ small, a simple d imensional 'analys is  o f  Eq. (60) tells us that,  
for  fixed t, 

~A,-1 ~ O(~1-1)  (62) 

Hence,  if we want  a theory correct  to order  e"l, we may truncate the hierarchy 
at n = nl + 1 and the (nl + 1)th equat ion may  be replaced by 

o~j;.~ + ~ - C~ + ~ C~ o L . ~  + l = ~Y~I + ~,~ ~ A , ~  + o< ~ + I) 
~ = 2  

(63) 

We then get a closed system of  equations for J;,1, (3fs,2... 3f~,~ 1 +i, whose solu- 
t ion for ~f~,2... ~f~,~ +1 leaves us in principle with a closed kinetic equat ion 
forfs ,1.  This point  will be illustrated in the next section for  nl = I. 

3. We can also check that,  to order  e~, the first 2nl t ime derivatives of  
fs.z at t ime t = 0 are given correctly. The  only exceptional case is nl = 0, 
where the first t ime derivative is still given correctly. In order  to show this, 
we notice that,  in the short- t ime limit, we have 

3f~,~ oc t  ~-1 (64) 

as a consequence of  the structure of  the exact hierarchy (49) and of  the 
initial condit ion (52). But the substi tution of  (63) in place of  the exact 
corresponding equat ion (60) amounts  to neglecting terms of  the type 

~f~,~ +1, e ~L,~  +~ (65) 

F rom (64), neglecting such terms is r igorous when calculating the first n~ 
derivatives of  3J;,~z+z at t = 0. I t  is easy to verify that  the first n~ + t 
derivatives of  3f~ .. . . . . . .  first 2n derivatives of f , ,1  are then also reproduced 
correctly. The exceptional character  o f  the case nl = 0 stems f rom the fact 
that, to order  e ~ no term of  the type ef~,l is neglected in the first hierarchy 
equation.  

4. Al though no rigor can be claimed for  the following remark,  we have 
an a rgument  which indicates that,  to any order  in e, the distr ibution functions 



498 P. Resibois and Joel L. Lebowitz 

f~,~ tend, for long times, toward their equilibrium value. A convincing 
argument on this point would be very encouraging: It is known that very 
often no order-by-order perturbation expansion is possible because of 
secular effects; this is the case, for example, with a straightforward expansion 
in power of the coupling strength for smooth potentials (see, e.g., Ref. 20). 
Our argument is presented in Appendix E. 

4. T H E  F I R S T  A P P R O X I M A T I O N  

Although the formalism introduced in the preceding section shows 
interesting formal properties, it remains to demonstrate that it is useful for 
explicit calculations. Of course, expansion to arbitrary order in E is hopeless 
and we shall henceforth limit ourselves to the first nontrivial order d.  
Moreover, we shall postpone for separate publication (16) the detailed study 
of this first-order kinetic equation; we shall content ourselves here with 
presenting those general properties of this equation that can be inferred 
very simply from previous work on hard-sphere dynamics. 

We thus take Eq. (63), with nl = 1, and formally solve it for Sf~,2 in 
terms of ~f~.l = f~,l, with the help of initial condition (52): 

Sf~,2(t) = �9 d r  {exp[(C~t + C2E)r]}5~2,~f~,a(t -- r) (66) 

Let us stress that, in contrast with (62), we do not expand 3fs,2 itself in powers 
of 4; we shall discuss this procedure later. 

Putting (66) into (43), we arrive at a closed kinetic equation for fs,~ 
[see also (50)]: 

f2 Otf~,~(xl; t )  = C~Z~f~,~(t) + �9 G ~ , l ( r ) f s , ~ ( t -  r ) d r  (67) 

where the non-Markovian kernel Gs,l(r) is defined by 

G~.~(r)f~,~(t - r) = ~,2{exp[(C~l + C2E)r]}~2,~f~,a(t - ~') (68) 

We see here that the approximation (66) amounts to replacing the kernel 
N~,~(r) of the exact formal kinetic equation forf~,l, 

f2 Otf~,~(x~; t)  = g, .~(r) f~.~(t  - r) d r  (69) 

by the first two terms, 

~f~,l(r) = C~ a(~-) + �9 + O(e 2) (70) 

in its �9 expansion. Although this procedure is, strictly speaking, not com- 
pletely consistent (one should expand the solu t ion  of the kinetic equation 
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around its zeroth-order approximation, and not the non-Markovian kernel 
of this equation), similar expansions are often made in the literature (see 
Ref. 22 for the example of the density expansion); they can be developed 
quite systematically. Here, to order d ,  there is of  course no need for such a 
systematic procedure, and the simple equation (50) suffices. Although the 
only exact property of (51) is that it leads to the correct first d correction 
for its solutionf~,l, it is hoped that it also retains some relevant part of the 
higher order terms. 

From the explicit definition (68) of the kernel G~,l(r), we now want to 
verify the properties of the kinetic equation (67) which were described in the 
introduction. We first remark that, at t = 0, the exact first two derivatives 
off,.1 are obtained exactly from (51): 

atf~,l [~o ~ = C~IA,~(O) (71) 

at2f~,ll~L~0 ~  (C~1)2f~,~(0) + Gs,l(0)f~,l(0) (72) 

This is an immediate consequence of a general property established in 
Section 3. 

Second, in the low-density limit, we can show that Eq. (67) correctly 
reproduces, beyond the trivial Boltzmann term, those terms in the linearized 
Choh-Uhlenbeck triple collision operator that describe one, two, and three 
dynamic binary collisions, weighted by the correct excluded volume fac- 
tors~ quadruple collisions terms are completely absent but they are 
known to be extremely small [~ O(10-6)]. We have not been able to find any 
deep justification for this result, which we prove, in Appendix D, by a 
pedestrian comparison with previous calculations. 

Third, the calculation of the density expansion of the self-diffusion 
coefficient with this equation leads to nonanalytic contributions(~Z): 

D = (1 /p)D (~ + D (~) + (p In p)D (2) + ... (73) 

where D (2) agrees with other work. 
Fourth, the velocity correlation function calculated with the same 

equation leads to a long-time tail of  the form 

(v(t)v(0)} = ~/t  8/2 (74) 
t~oo 

However, the proportionality coefficient c~ does not take the value which 
ig believed now to be correct (i.e., ~ = k~T/{12[rr(~/nm + D)]a/2}, where ~7 
and D, respectively, are the exact viscosity and diffusion coefficients), except 
in the dilute gas limit. 

The two properties (73) and (74) are closely connected. Indeed, they 
both are known to be consequences of the dominant role played by the so- 
called "r ing diagrams" in these problems. But we can readily verify that 
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the kernel Gs,~(*) [Eq. (68)] does contain, among other things, these " r i ng"  
contributions. Indeed, if we retain only the first term on the right-hand side 
of  (48a) for ~2,~, we generate a corresponding expression for the kernel: 

= .f dx2 K~2 {exp[(E[~ + C2E)"r]}g2(rl, r2) Gs,l(r)[ring 

x [K12, fs.~(t)/q~(vl)]~o(vl)~o(v2) (75) 

By direct comparison with previous works, ~13,~5~ this expression can be 
identified with the " r i ng"  terms, evaluated in the Enskog approximation, z6 
Hence, (73) and (74) will be immediate consequences of our theory if we 
can show that the second term of (48a) does not spoil these asymptotic 
formulas. This can be done with little difficulty, but, since a similar problem 
will be tackled explicitly in the second paper of  this series, (16~ we shall not do 
this here. 

These very attractive features make our first-order kinetic equation 
(51) an excellent candidate for approximately describing the dynamic 
properties of  a hard-sphere fluid for all times and all densities. We shall, 
however, leave such an analysis for a further publication/z6~ The extension 
of the theory to the " t o t a l "  case, where all the particles.play a symmetric 
role, and to an interaction involving a small attractive part  superimposed on 
the hard core, is straightforward and will be reported elsewhere. ~9~ 

5. D I S C U S S I O N  

In this section we summarize the formalism developed in this paper. By 
eliminating all computational details, the structure, including all the weak 
links, is exposed. 

Letf~,~(xl ..... xn ; t), n = 1, 2 ..... be the thermodynamic (infinite-volume) 
limit of the time-dependent self-distribution of a fluid. These functions are 
the solution of the infinite BBGKY hierarchy, which may be written in the 
form(11) 

OL, ~/Ot = g , , , f ~ , ,  + H~.n + if~,~ + 1 (76) 

with specified initial conditions: 

L,~(x~; o) = W~(x~) 

. . . .  , O ,  : j , / > 1  (77) 
L - -  J j = 2  

is Professor E. G. D. Cohen has informed us that D. Lieberworth is also analyzing the 
role of the finite time contributions of these "ring terms." 
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Before discussing our approximation scheme we make several remarks on 
these equations: 

1. The operators H, , ,  and H,,~+I are "well-defined" for hard-sphere 
systems. Indeed, since H~,~+I is an integral (not a differential-integral) 
operator for hard spheres, Eq. (76), which can be written concisely as 

aft~at = Hfs, fs = (f~,l,f~,2 .... ) (78) 

has solutions which are in some ways better behaved for hard spheres than 
for systems with soft forces. <24) 

2. It follows from recent results on the time evolution of infinite 
systems (24,2~ that (76) with the initial conditions (77) will have a well- 
defined solution for all fixed time t. Whether the solution has a limit as 
t - +  ~ and whether that limit corresponds to an approach to equilibrium 
depends on the ergodic properties of infinite systems, about which very little 
is known at the present time (26~ [For finite systems of hard spheres, it 
follows from Sinai's results (unpublished but see Ref. 26) that the fs,n do 
approach their equilibrium values as t--+ ~) .  

3. Since the operators H, , ,  and Hn,~+z and the equilibrium correlations 
gn(rl ..... r~) are symmetric in xl .... x , ,  it follows from (77) thatf~,~(xl .... x , ;  t) 
will be symmetric in x2,..., x~ but not in xz unless Wz(xO = const • q~(v~), 
which corresponds to the f~,~(x~,..., x , ;  0) being equal (or proportional) to 
their equilibrium values. For such initial conditions we would of course 
have Of~,,/~t = O. 

There is clearly no hope of ever obtaining an exact solution of (76) for 
any system more complicated than a one-dimensional system of hard rods. (2~ 
We are therefore forced to look for approximation schemes. Desirable 
criteria for good approximation schemes include: (1) physical reasonableness, 
(2) mathematical tractability, and (3) a systematic procedure for improving 
the approximation; in principle at least, this would give a sequence of 
approximatef~,, that converge to the exact solution. We are actually interested 
primarily in f~,~; or even more restrictively, just in certain moments of 
f~,l, such as the velocity autocorrelation function or the incoherent neutron 
scattering function. 

The approximation scheme developed in this paper is, to our mind, the 
natural generalization of the (unsystematic) first approximation for hard 
spheres given by Lebowitz et al., ~3b~ which leads to the Enskog equation for 
f~,~. Our method utilizes a specific nontrivial representation of the f~,~. We 
write 

f~,,(xl .... , x~; t) = ~ D.,j 8fs,j (79) 
j = l  
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where the D,,j are time-independent linear operators, 

D.,j 3f~,j = f ... f dxl'  ... dx /  ~ , j ( x l  ... x.lx~' ... x / )  

x ~f~,j(xl', .... x / ;  t) (80) 

which depend only on the equilibrium correlations gz, l ~< n + j ;  they are 
symmetric in {x2,..., x~} and in {x2', .... x/}, with 

~ . , .  = I~I ~(x~ - x,'), ~A - A  (81) 
~ = 1  

Using the same notation as in (78), we may write (79) in the form 

f~ = D 6f~ (82)  

Taken by themselves, Eqs. (79)-(81) do not in any way define the 
D.,j for j < n. (In particular we could set them equal to zero and have 
trivially f . , .  = 3f~,..) What we are interested in, however, is to choose the 
D.,j in such a way that if we set ~f~,j = 0 f o r j  > k we would have, for our 
problem, a good (hopefully the best) approximate description of the f~,~ 
for n > k in terms of the first k distributions. 

Our physical intuition then leads us (cE Refs. 3b and 17) to define the 
D~,j through the W's introduced in Section 2. This, we believe, makes the 
D~,j, for j ~< k, describe the effects of the fiparticle dynamical correlations 
inf~,~. 

Our belief is strengthened by the form which the BBGKY equations 
take on in terms of the 3f,,~. Combining (82) with (78) gives 

88f,/St = (D-~HD)  8f, --- 5 ~ 8f~ (83) 

The interesting fact is now that ~ is just a tridigonal operator matrix, which 
shows that the dependence of 8f~,~ on ~f~.~, k < n, changes in time only 
through collisions of a dynamically correlated group of n - 1 particles with 
an uncorrelated particle. 

Equation (83) is formally equivalent to (76) or (78) and the initial 
conditions (77) correspond now to 

~f~,l(xl; 0) = Wz(xl), 8f~,j(xl,..., xj; 0) = 0, j >/ 2 (84) 

All we have gained by transforming (76) and (77) into (83) and (84) is a 
form suitable for our approximation scheme. Setting 3f~,j = 0 for j /> 2 
leads to a non-Markovian equation for f~,l which contains, we believe, all 
the essential physics of the problem, e.g., the long-time tails in the velocity 
autocorrelation function. This is, however, only a belief since the resulting 
equation for f~,l is hardly mathematically tractable. We therefore chose, in 
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Section 3, an alternative scheme which we believe is physically reasonable, 
We write formally 

5 ~ 1 7 6 1 7 6  (85) 

and then argue that, with our initial conditions (84), Sf~,, oc O(e n-~) for any 
fixed time t. Therefore to zeroth order in e we again obtain the Enskog 
equation, while to first order in e we still obtain a closed set of  equations for 
f~,~ and 3f~,2 which now leads to a more tractable non-Markovian equation 
f o r f  This equation is solved approximately in Ref. 16 and the good results 
obtained from it are described in Section 4. 

We should mention here that while it would be very desirable to express 
the D~.j directly in terms of the infinite-volume equilibrium correlations, 
without going through the awkward use of the W's for finite systems, we 
have so far not found a simple, general way for doing this. 

A P P E N D I X  A. C O N S T R U C T I O N  OF THE An,m 

Consider first the quantity 

I .  = lima N n - ~ f  dx,~+~ .-- dx. f2~o 
fm(xl,  xa, . . . ,  xs~; t) 

(A.I) 

defined for any function fro, symmetric in its m - 1 variables different from 
xl ,  which goes to zero at large distances; Iv is a linear functional of fro and 
can be written formally as 

L - ( dx2' ... dx,n' ~n.m(Xl, X2 ..... xnrxl ,  x / ,  .... x j )  

x fro(x1, x2',..., xm'; t) (A.2) 

where En,~ depends on the equilibrium correlation functions g~ + m, gn + ~-1,..., 
g~, with u = Max (m, n). Its explicit form can be written in general but we 
shall not need this here. For example, we have 

~3,2(xl, x2, x31xl, x / )  = p~g3(rl, r2, ra) [3(x: - x2')~(va) 

+ ~(x3 - x 2 % ( v ~ ) ]  

+ p3g4(rl, r2, r3, r2')cp(v2)~o(v3) (A.3) 

We shall generally abbreviate (A.2) by writing 

In = E,,mfm (A.4) 
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Take  now the ruth term in the expansion (13): 

l < j 2 , . . < j  m 

+ 

1 < ] 2 " - ' < j m _  1 

Wm(X~, Xj~ ..... Xjm; t) 
~(v~) ... v(vj~) 

Wfl m- ~)(x~, xj~,..., xj~_~ ; t) 

w~J)(x~ ; 01 
+ "  + ~(v0 1 (A.5) 

The condi t ions  tha t  generalize (20) and (28) impose  

N ~ - ~ (  dx~+~ ... dxN tz (m) = 0, n = 1, 2 ..... m - 1 (A.6) lira 
J 

Wi th  the help o f  the no ta t ion  (A.4), this leads to a system of  m - 1 l inear  
equat ions :  

E~,mW m -+- En,m_lW(m m-l) 4 - . . .+  En,lW(m 1) = 0, n = 1, 2 , . . . ,m - 1 

(A.7) 

which, in principle,  can be solved for  W~ ~-1) ..... W~m 1) in terms of  Wm. We 

write this solut ion as 

W(m m-O = Pm_i,mWm, i = 1, 2,..., m -- 1 (A.8) 

where the Pro', m (m' < m) are l inear  funct ionals  of  the same type as the 
E~,m. Of  course,  their  explicit  form is in general  very compl ica ted ,  but  it  
can be found in simple cases (see Append ix  B). 

F o r  n >1 m, the con t r ibu t ion  o f  ~(m) to f~,m is given by 

fs.~ = l ~  N n - l  f d x n + l ' " d x u ~  (m, 

~_~ (A.9) 

= En,mW m + ~ En.~W(m m-i) 
i = l  

and, from (A.8),  this can be rewri t ten as 

where 

with Pm,m 
text.  

f~,~ = A~,mWm (A.10) 

A~,m = ~ E~,mFm,,m 
r a ' ~ m  

(A.11) 

-= 1. Summing  (A.10) over all m ~< n, we recover Eq. (29) o f  the 
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A P P E N D I X  B. CALCULATION OF B2, 2 

Because of the condition m ~< n on the summation in Eq. (29), the 
inversion of the matrix A [see (33)] can be done step by step. For example, 
fromf~.l = W1 and [see (31)] 

.f~.2 = A2,1W1 + A2,2W2 (B.I) 

we get readily 

W2 = (A2,2)-l[fi.2(xl, x2; t) - Pg2(q, r~)f~.~(xl; t)q~(v2)] (B.2) 

Thus 

B2,2 = (A=,2) -~ (B.3) 

Nevertheless, because A2,2 is a linear functional [see (31)], the calculation of  
(A=,2) -1 is not trivial. To see how this can be done, at least in principle, let 
us introduce the following three-body conditional correlation function: 

(B.4) 
Lg2(rl, r2)g2(rl, r3) 

and let us define a three-body direct correlation function d(rl; r2, r3) by the 
formula 

Ga(rl; r2, r3) = d(rl; r2, r3) + p f dr~ d(rl; r2, r~)g2(r l ,  

• G3(rz; r4, r3) (B.5) 

In order to see more clearly the physical meaning of this quantity d3, 
let us notice that the tagged particle 1 plays a special role in the above 
equations; hence, it is rather natural to consider this particle 1 as the source 
of an external field which acts on the other molecules in the system; with 
this interpretation, we identify 

pg2(rl, r2) = pl(r2), pg3(rl, r2, r3) = p~(r2, r3) (B.6) 

where the #n(r2,..., r~+~) denote the fluid distribution functions in this 
external field. Letting av(r2, r 3 ) =  d(rl;r2,  r3), we see that (B.5) can be 
written as 

G2(r2, ra) = av(r2, r3) + f dr4 av(r2, r4)#l(rOG2(r4, ra) (B.7) 

with an obvious definition for the pair correlation function G2. We see that 
avis nothing else than the usual Ornstein-Zernicke direct correlation function 
in the external field created by particle 1. With the definition (B.5), it is a 
simple matter to formally invert A2,2, given by (31) (see Ref. 3b for a similar 
calculation). If  we define the quantity ~-(x~, x2, x3) by 

o~(x l  ; X2, xa) = 3 ( x 2  - -  x 3 )  - -  p q ~ ( v 2 ) g 2 ( r l ,  r2)d(r~ ; r2, r3) (B.8) 
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it is easily shown that  

1 
f dx3 J ; ( x l  ; xg., x3)[f~,2(xl, x3; W2(xl,  x2; t) - pgz(rl ,  r2) t) 

- pg2(rl, r3)fs, l (x l ;  t)~o(v3)], [rl21 > a (B.S') 

which is the explicit representation of  (B.2). 
For  later use, let us point out  an interesting property of  the function d. 

Consider Eq. (26) in the limit where the distance between particles 1 and 2 
becomes much larger than  the range of  interaction (mathematically, we take 
[r12]-+ or). With the abbreviation 

k(r l ,  r2, rff) - [g3(rl, r2, rff) - g2(rl, r2)g2(rl, rff)} (B.9) 

we decompose in this limit the integral on the right-hand side of  (26) into 
three parts: 

1. Ir2,xl finite (hence 1r2,21 ~ OO). 

lira k(rl ,  r2, r2') = 0, [r2,~I finite, 1r2,2[ ~ oo (B.10) 

2. [r~,21 finite (hence [rl,~l ~ oo): 

lira k(rl ,  r2, r2') = [g2(r2, r2') - 1], 1r2,21 finite, [r2,~[ --~ m (B.10') 

3. It2,11 ~nd  I~'~] both  1~rge: 

lira k(rz, rz, rz') -- O, [r2,2] -+ 0% [r~,z[ -~ oo (B.IO") 

In this limit, Eq. (26) thus becomes 

f 8f~,2(Xl, x2; t) = pW2(xl ,  x2; t) + pq~(v=) dxff  
[ r l2 l~  ~ 

• [g2(r2, r2') - 1]W2(Xl, xff;  t) (B.11) 

The inversion of this formula can be done immediately with tlae help of the 
usual (Ornstein-Zernicke) direct correlation function c(Irl - r~l), ~3'~ 

(l/p) ( dx3 C(x2, x3) 8f~.2(x~, x3; t) (B.12) W~(x~, X2; t) 
d 

where 

C(x~ ,  x3)  = ~(x~ - x3) - p~(v~)e(Ir~ - r~r) (B.13) 

Comparing this limiting result (B.11) and (B.12) with the exact equations 
(B.8) and (B.9), we infer that  

lira d(rl ; r~, r3) = c(r2, r3) (B.14) 
Ir121 ~ 
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A P P E N D I X  C. PROPERTIES OF ~o9q2,,~ (m = 1, 2, 3) 

Direct computation along the lines indicated in the text, after Eq. (46), 
leads to Eq. (47), with the following expressions for cp , ~2.2, ~q~2,a. We 
have 

+ pK~L,~(x~; 0~(v~)gdn, r~) 

+ p2 f  dxa K18[ga(rl, r2, ra) - g2(rl, r2)g2(rl, r3)l 

• L.~(x~; t)~(~)~(~) 

ps f dxa Ksag~(r~, rs, r~)f~,z(x~; t)q~(v~)~(v~) (C.1) + 
d 

and 

~ , ~  = - ~ 1 ~  - ~ ~ + ~e~,~ + ~ , ~  + KI~ 
c,, 1 ~ t 2  

where 

5G,~ ~A,dt) 

and 

(c.2) 

=f 
+ p2[g3(rl, r2, ra) - g2(r~, r2)g2(rl, r3)] 

x Wdx~, x3; t)~(v~) 

f dx4[g,(rl, r2, r3, r4) - ga(rl, r2, r3)g2(rl, r,) + pa 

- ga(rl, r3, r4)g2(rl, r2) + g2(rl, r3)g2(rl, r4)g2(rl, r3)] 

x~; t)~(vg~(v3)~ 
% 

x Wdx~ , 
) 

~ , ~  ~L,dt) 

= f dx3 K2~{P2g3(rl, r2, r3)[W2(xl, x2; t)q~(vz) 

+ Wdx~, x3; t)qffv~)] 

pa(  dx4[g~(rl, r2, ra, r~) - ga(rl, r2, ra) + 

• gz(rl, r4)] W2(xl, x4 ; t)cp(v2)~(va)~ 

(c.3) 

(C.4) 
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Here W2 is itself linearly related to ~f~,2 by (26). Finally, we get 

2e~,~ ~L,3(t) = f dx3 (KI~ + K23) ~L,~(xl, x2, x~; t) (C.5) 

In order to transform ~2,z into the compact form of Eq. (48) of the 
text, we merely have to use the second BBGKY equation at equilibrium: 

= o f dxa [gla + K23]g3(rl, r2, ra)q~(vl)q~(v2)5o(v3) (C.6) 

in order to rewrite the first and last terms in the right-hand side of (C.1). 
We now want to establish the asymptotic properties (56a)-(56c) for the 

case n = 2. Equation (56a), which becomes here 

lim ~~ = 0 (C.7) 
[ r 1 2 1 ~  co 

is quite trivial to prove; indeed, the first term in (48a) vanishes in the limit 
]r121 --> oe because we have [see (40)] 

lim K~2oc lim ~([r~2]-a)  = 0  (C.8) 
I r l 2 l  ~ oo Ir121 ~ oo 

and, with the help of (B.10), a similar property is readily established for the 
second term. 

Equation (56b), namely 

lim $2,2 = C ~  + ~2 ~' (C.9) 
] r 1 2  ] -~ oe 

is trickier to prove. Consider, for example, in this limit s176 given by Eq. 
(C.4). Because of (C.8), we know that in the integral over r3 in (C.4), the 
only region that contributes is such that r3 is close to r2, and thus far from 
r~ in the limit ]rz~[---> co. In analogy with (B.9) and (B.10), we put 

l ( r l ,  r2, r3, r4) - [g,(r l ,  r2, r3, r4) - ga(rl, r2, r3)g2(rl, r,)] (C.10) 

and we consider three regions in the limit ]r~2] -+ oe : 

1. [r4~[ f ini te  (thus [r3,[ and [r24[--> oe): 

lim l(rz,  rs, r3, r4) = 0 (C.11a) 

[r41[ finite, [r23[ finite, [r12[--+ co 

2. [r~21 and Ir~3] finite (hence [rza[--+ co): 

lim l ( r l ,  r2, r3, r4) = (g3(r2, r3, r4) - g2(r2, r~)) (C.11b) 

[rlz I --+ co, Irma[, Ir2~[ finite 
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3. [r4at and [r42[-->oo (and Ir411--> oo): 

lim l(rl, r2, ra, r4) = 0 (C. 11 c) 

[r121 -+ o% Ir141 -+ o% [r2a] finite 

Since the only nonvanishing term, (C.11a), goes to zero for ]r24I ~ oo, we 
may thus write f rom (C.3) 

lira 5~ ,s  ~Ss,2 : lira p f dx3 K2a~g2(r2, ra)[pW~(xl, x2; t) 
I r i 2 1  ~ co I r x 2 l  ~ oo J 

x ~(v3) + p W~(x~, x3; t)~(v2)] 

+ p2( dx4 [ga(rz, ra, r4) - g2(r2, ra)] 
t l  

x W2(xl, x~; t)5o(v2)q)(v3)} 
% 

(c. 12) 

where the x4 integral extends over the whole phase space of  particle 4. We 
now use (B.11) in order  to t ransform the first two terms o f  (C.12). With the 
help of  the identity 

f dx8 K23g2(r2, ra)~o(v2)q)(va)O(xl, x2) = 0 (C.13) 

valid for any function ~ (x l ,  x2) (as can be immediately verified by using as 
integration variable ra2 = ra - r2), we then cast (C.12) into the following 
form: 

lim 5~,  z ~f~,2 = 6'2 ~ 3f~,2 + 3L-~e~,2 ~f~,2 (C.14) 
I r 1 2  [ ~ 

where C2 E is given by Eq. (59), while we have 

85~,2 ~f~,2 = lira p ~ dxa K2a~ - p2g2(r2, r3) 
I r l 2  [ ~ oo . /  

x ~(v2)~o(v3) f dx4 [g2(r3, r4) - 1] W2(xl, x4; t) 

+ p2f dx, ga(r2, r3, r4)W2(xl, x,; t)} (C.15) 

The term of  (C. 15) involving g3 is simplified with the help of  the second 
B B G K Y  equilibrium hierarchy (C.6). After some rearrangement  of  dummy 
variables, we arrive at 

3~cf:,zSfi,2 = lira ~ _ p 2 f  dxa[Wz(xz, xa;t) + pq~(va) 
IT12[ ~ k J 

f , ,. 
x dx4 g2(ra, r~')W2(xa, x~ , t) 

x K2~gz(rz, r~)q~(vz)~v(v~) 

+ pzv~ ~ dx~ [g~(r~, r~) - 1]W~.(x~, x~; t) (C.16) 
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Because the distance Iris[ goes to infinity with [r~21, we may use Eq. (B.10) 
to simplify the first term of (C.16); in the second term, we use similarly 
(B. 11) together with the definition 

= --  f ~ r t X  ~r ~ [g2(r2, r~) - 1] c([r2 r~[) + P dry '  c([r  2 4 ) g 2 t  4 ,  r4) (C.17)  

of  the direct correlation function c([rl - r2]). We obtain then 

82~,28f~,2 -Bpq~(v2)v2~-~2 f dx2' V(r2 r2')Sfi,2(xl, x2, = - '" t )  ( C . 1 8 )  

in agreement with Eqs. (57) and (59). A similar but simpler proof  holds for 
~r but we shall not reproduce it here. We are then immediately led to 
(C. 10). The demonstration for arbitrary n runs along similar lines, though it 
is technically much more involved. ~~ 

A P P E N D I X  D. L O W - D E N S I T Y  L I M I T  17 

The detailed analysis of hard-sphere three-body collisions is a techni- 
cally complicated problem, and has been discussed mostly by Sengers and 
co-workers (see, e.g., Refs. 21 and 23). In order to compare their results with 
the low-density limit of the present theory, we shall rely heavily upon Refs. 
12 and 23, which will be denoted as S I and S II, respectively. Whenever pos- 
sible, we use the notation of these papers, with no explicit redefinition. 

It is shown in S I that the three-body collision operator that determines 
transport coefficients can be written [S I (A.7)] 

K(fff) = �89 ~ f dx2 dxa Tu(123)f(xl; t)f(x2; t)f(xa; t) (D.1) 
u,'=l d 

where the operator T, will be defined below. In the linearized approximation, 
and taking into account that in self-diffusion only particle 1 is out of  equilib- 
rium, we get: 

Ksf~,l - �89 2 ~ f dx2 dx3 Tu(123)fs,l(xl ; t)~o(v2)~o(va) (D.2) 
d 

The operators T., which physically describe /~ successive binary colli- 
sions, are defined by 

T~(123) = 2f~af23T~2 (D.3) 

7'2(123) = -2[T12f2aS~ + T~2f2aS~176 + T~2S~176 a] 
(D.4) 

Ta(123) = 2[TI2S~176 + T~2S~176 
+ T~2S~176 -- T12S~176176 (D.5) 

17 The reader of this appendix is assumed to be familiar with Refs. 12 and 23. 
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where we have taken into account the symmetry of particles 2 and 3. A 
similar expression exists for T~(123); we shall not need it here, although it is 
worthwhile to recall tha t  it contributes extremely little [~O(10-6)] to the 
transport coefficients. 

To compare these results with the present theory, we transform T2 
and 7"3 with the help of a series of identities summarized in S II. Using 
S II (1.5) and S II (1.6), we get from (D.4) and (D.5) 

T2 + Ta = 2T~2[S~ ~ + S~ + S~176 

+ 2Tz2[S~ + TIa)S~ (D.6) 

Using then S II (2.12) and S II (II.1), we arrive at the following compact ex- 
pression: 

/'2 + ira = 2Tl~(S~ + S~176 + 2T12S~ + 5~13)S~ (D. 7) 

Consider now the collision term in Eq. (67); expand it to second order in the 
density and take its Laplace transform; denote the result by _R~. We write it 

We have 
I"  

I(s'fs,1 - p2 J dx2 g(1)(rl, r2)K12f~,lq~(v2) (D.9) 

Here g(Z)(rl, r2) represents the first density correction to the pair correlation 
function; outside the core, we have 

g(1)(rl, r2) = f draflaf2~ (D.10) 

and we get thus, comparing with (D.2) and (D.3), 

�89 f dx2 dx3 T~(123)f~,z(x~, t)~o(v2)~o(va) (D.11) K'fs,1 

Similarly, _Rs" is defined by 

-" f K,~,I  = p2 dx2 dxa {K12S~176 r2, ra) - g2~ r2) 

x g2~ r3))[K~,,f~,dx~, t)/qo(v~)l 

+ (K~ + N2~)S~ r2) 

x [K12,f~,l(xl ; t)/~o(vl)] 

+ K2aS~176 ra)[K~3, fs,~(x~, t)/~(vl)]~ 

x q~(v~)~(v2)q~(va)} (D. 12) 
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where gO similarly represents the correlation function g~ to zeroth order in 
the density: 

g2~ r2) = 1 +f~2 (D.13) 
g3~ r2, r3) = (1 + f~2)(1 + f2a)(1 + fl~) 

We can now transform (D.12) with the help of TM 

fla[K~a, f~, jcp(v0] = 0 (D. 14) 

K~2m~ = 0 (D.15) 

which are obvious consequences of the geometry of a binary collision (see 
also S II); we get 

R2Z,z  = p2 f dx2 dxa {K12[~(X~ + S~ ~ 

x [Kla,f~,l(xl ; t)/cp(vl)] 

+ S~ + K2a)S~ t)/cp(v~)]~ 

x ~o(v~)qo(v2)~o(va)} (D. 16) 

If we notice that the definitions of the present paper and of S I and S II 
imply 

K12 = T12 (D.17) 

[K12,f~,l(xl; t)/q~(vl)lq)(vl)q)(v2) =- T12f~,l(xl; t)~o(v2) (D.18) 

the comparison between (D.16) and (D.7) leads to: 

Ks f~,z = �89 dxz dx3 [r2(123) + T3(123)1 

x f~,~(xl ; t)cp(v2)~o(va) (D.19) 

Together with (D.9), this last formula implies the statement made in the text. 

A P P E N D I X  E. T H E  A P P R O A C H  TO E Q U I L I B R I U M  

From Eqs. (12), (29), and (34), thef~,n will reach their equilibrium value 
for long times if 

fs,l(xl; t) -~ 8f~,l(xl; t ) - + 0  (E.la) 

~fs,~(xl,..., xn; t) --+ 0 n > 1 (E.lb) 

18 We use here the remark in footnote 13. 
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In  order  to prove  (E. la)  and (E. lb)  order  by order  in an e expansion,  
we formal ly  expand 

afs,n = ~ E m 3f~(~ ) (E.2) 
m=0 

Condit ions (E. la)  and (E. lb)  are the consequences,  in the infinite- 
volume limit, o f  the fact that  we have taken only one tagged particle, which 
diffuses away in the whole system. However ,  we expect our  description for  
one tagged particle to remain valid when we have N,  of  them,  provided tha t  
the density pl = N~/f2 << p; in this case, we expect that  the corresponding 
one-particle d.f., denotedf~ '  ~, tends to 

f ' , l (x ,  ; t) t-~o~ ~" Pzq~eq(v*) (E.3) 

which is s tronger than  (E.la) .  In  order  to prove  (E. la)  and (E.2) we shall 
formal ly  work  here in a finite, albeit large, system and we shall show that,  to 
leading order  in ~ ,  the distr ibution fs,~ (normalized to unity in ~Q) satisfies 

f~,t(x, ; t) 5-_+oo~ (1/f2)50eq(v2) (E.4) 

When  f2--+ oo, this reduces of  course to (E.la) ,  but it also implies (E.3) 
when N1 particles are considered at  density p, << p. F r o m  (60), we obtain  
the t ime evolution of  3f~(,~ as 

~f}~)(t) = exp C~1 + ~ ( t -  t ' )  
i=2 

0 (E.5) 

The a rgument  runs by recurrence. Suppose tha t  

3f~(m-*)(t) t ~  ~ 0 all n' (E.6) 

3f~(,~)+,(t) ,~  ~ 0 (E.7) 

Thus  the bracket  in (E.5) vanishes for  large t ' .  
Moreover ,  we know that  in the limit where t - t '  is large the effect o f  

the opera to r  exp [C~l(t  - t ' )]  is to bring any f u n c t i o n f ( x ,  ; t ' )  to the spatially 
uni form equil ibrium state z9 

1 
{ e x p [ ~ , ( t  - t ')]}f(x,; t') t ~  -~ q~(v,) f dx~ f(x~; t') (E.8) 

*~ Of course, due to hydrodynamic effects, the Enskog operator C~, (and C~ E) has 
eigenvalues which are as small as we wish in the long-wavelength limit. Thus the 
approach to (E.8) can be very slow. This feature makes it very difficult to make the 
present argument rigorous and is of course related to the "long-time tails" already 
mentioned.(*4, .5) 
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Similarly the operator  C, E projects the function f (x , ;  t') onto the conserved 
part  o f  its zero-wavenumber Fourier  componen t :  

' i  f {exp[C~E(t -- t ')]}f(x,; t') t_t.-iT?-G~+ -~ q)~(v~) dvi ~(v0 -1 
C r  

x ~o~(v~) I dr~f(r~, v~; t) (E.9) 
[ 

where the p~(v~), a = 1,..., 5, denote the five well-known or thogonal  conserved 
states(2*~; we shall no t  need their explicit form here. ~~ 

F rom (E.5), (E.8), and (E.9) we get thus for n > 1 

a~,,+lt J + ' " }  

1 f ~C(rn') i t ,  ~ -+... ~-~ drl . . dr~ {5~',,,+ ~ as,n+ lt , + ' " }  (E.10) 

where we have found no need to write down explicitly the (obvious) velocity 
factors coming f rom (E.8) and (E.9). One can easily check that  the bracket 
in (E.10) is a function o f  rl ..... r~ and is localized in space, and the right- 
hand  side o f  (E.10) is thus o f  order f~-";  for n > 1, it becomes negligible 
compared  to (E.4) in the large-volume limit. 

For  n = 1, we write more  explicitly 

, f {exp[C~(t, - t')]}SP1,2 8f},~>(t') ~ _ ~  ~ q~(v~) dxl  ~1,2 8 r(m~''~J~,2 t~ j (E.11) 

and we use the easily checked property [see (45)] 

f dxl s . . . .  0 (E.12) 

to prove that  the r ight-hand side o f  (E.11) is zero. 
Therefore, for t -+  o% the integrand of  (E.5) vanishes for all t '  and we 

get 

3f~ ' ( t )  ,~oo> 0 (E.13) 

We have now to reexamine the basis o f  our  recurrence argument,  Eqs. 
(E.6)-(E.7). In  order to assert (E.7), for given m and n, it is sufficient to 
notice that, f rom (62) and (E.2), we have identically 

3f~,~+l+~(t) = 0, i > 0, all t (E.14) 

20 In (E.8) and (E.9) we have used the usual scalar product in velocity space(21~: <f[g > = 
f dv ~o(v)- lf*(v)g(v). 
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Then (E.9) guarantees  tha t  the same resul t  holds  for  m, m -  1,..., l .  

Similarly,  the val idi ty  o f  (E.6) will be asser ted if  we can show tha t  

~f~,~ = 0 all  n '  (E. 15) 
t ~ o o  

F o r  n' > 1, this is t r ivial ly t rue in view o f  (61). 
F o r  n' = 1, m = 0, on the  o ther  hand,  the Enskog  equa t ion  tells us tha t  

c(~ " t )  -+  (1/f2)~(vl) (E. 16) 3f},~ ; t) =- j s , l t  1, 

which cont rad ic t s  (E.6). This  except ional  case is, however ,  comple te ly  
harmless  because 3f{o~ only enters (E.5) in the combina t i on  

~LP2,1 3f{?>~(t) t -  o0 > (1/~2) ,L, e2,1q~(v 0 

= 0 as t --> oo (E. 17) 

Hence,  even in this case, the  a rgumen t  leading  to (E. 13) remains  valid. 
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